Study of Sonochemical in Mixture of Acetone with O – Benzo Quinone

Abstract

Ultra sound velocity, density and viscosity are Experimently Determind in the mixture of acetone with o – Benzo quinone over entire range of compostion at 303. ook and 308k These measerements have been used to evaluate some important parameter such as isentropic compressibility, specific acoustic impetonce, intermolecular free length, molar sound velocity, apparent molal compressibility, specific viscosity, reduced and relative viscosity and some other parameters for the same conentrations and temperature range. These parameters have been discussed in the terms of solute solvents interaction ons. The Ultrasound velacity increases on increasing concentration of solute.

Keywords: Somochemical Study, Acetone, O-Benzo Quinone Introduction

Investigations of the physicochemical properties of the denatured state of o – benzo quinone are required to identify and characterize the contribution of various non-bonding interactions1-2 between different functional groups of o – benzoquinone and acetone – solvent interactions which are the driving force of covalent process the study of ultra sonic leads to a better understanding of the nature of interactions between the solute – solovent3 in recent years these have been as increasing interest in the study of non – electrolity components in equeous and non aqueous solutions4 The physical properties of dilute solutions of non – electrolyles depends that the solute in a Acetone structure breaker or maker the influence of small quantity of o – benzoquinone on hydrogen bonded structure of acetone in the above solutions the results have been discussed in tems of various interactons operating in these system. **Experimental**

The Ultrasound velocities of the solutions were measured with a multi frequency ultrasonic interferometer of model f - 81.Quarts crystal have different frequency and have the accuracy of about \neq 0.05% the average of ten reading's treated as a final value of ultrasound velocity the temperature around the cell was controlled with in \pm 0.01 by circulating the water from thermostat density measeerement were reformed with a pre collaborated bicapillary pycknometer. The accuracy of densitv measurements was up to \pm 0. 0001 gm/cm3 visosities were measured using an ubbelohde type capillary viscometer. Which was calliborated with doubly distilled water at three temperatures. The efflux time was measured using an electronic watch with a resolution of 0.01 see. An overaze of four the meassered viscoties was 0.005 cp The ultrasonic parameter such as molar sound relocity (R), Apparent molal compressibility (\u00f3k), insetropic pressibility, (Bs), specific aeoustic impedance (z), Specific viscosity (nsp) and reduced viscosity, (nred) were computed in there solutions using the described standend formulae5.

Where M = n1 m1 + n2 m2 is ettctive molecular, weight. Where n1 and n2 are the number of moles of solvent and solute and m1 and m2 are their molecular weight respectivity. P and P0 are there donsities of solution and solvent and V and V0 are their U.V respectivity. β s and Bs0

Santosh Kumar Assistant Professor, Deptt.of Chemistry, J.S.University Shikohabad, Firozabad

Manoj Kumar Sharma

Associate Professor, Deptt.of Chemistry, Agra College, Agra

E: ISSN NO.: 2349-980X

are the isentropic compressility of solution and solvent and c is the concentration of solvte in mole/litre.

The present work the chemical o – benzo quinone and Acetone used of AR (BHD) quality.

Aim of the Study

The Ultra Sound Study of Somochemical in mixture Acetone with O-Benzo Quinone. The Spectral study also have been carried out by I R Spectroscopy. **Result and Discussion**

It can be seen from there data that the ultrasound velocity of solutions increases with increasing the concentration of o – benzo quinone in the solution of acetone at different - temperature. The ultrasound velocities of some sample decreases on increming temperature this trend of variation of ultrasound velocity also obseved for this solute.

The viscosity and reduced viscocity are given for the sample of o – benzo quinine with acetone solvent is tabulated in table and the volue of malar sound velocity and isentropic compressibility is given in the table and the value of specific acostic impedance and appaent molar compressibility (ϕ k) are given in the table.

The viscosity of solutions for the given sample inceases with increase in the concentration of o-benzo quinone. The variation of density, vicosities of the present work also agreed with singh at.al.6 The

Shrinkhla Ek Shodhparak Vaicharik Patrika Vol-III* Issue-XII*August-2016

linear results of desity and ultrasound velocity have also been reported for glucose in binary aqueous solution of mannose maltose and raffinose by pal A and chauhan N 7 Linear result for molar volume for the electrolyte in aqueous solution of alcohals also shown by parmer M Lard guleria M.K and others8-9

	Viscosity		Specific viscosity	
Molar Cone.	303.K	308K	303K	308K
O- benzo.				
Quinone				
(mole/Lit)				
0.0216	0.3175	0.2804	0.0037	0.0042
0.0432	0.3196	0.2825	0.0105	0.0119
0.0649	0.3218	0.2847	0.0174	0.0197
0.0865	0.3240	0.2869	0.0243	0.0275
0.1081	0.3261	0.2890	0.0311	0.0353
0.1297	0.3283	0.2912	0.0380	0.0430
0.1513	0.3304	0.2933	0.0448	0.0508
0.1730	0.3326	0.2955	0.0517	0.0586
0.1946	0.3348	0.2977	0.0585	0.0664
0.2162	0.3369	0.2998	0.0654	0.0741

the results are also agreed with kumar P. et. Al10 the physicochemical behariour of liquid mixture is also studied by R. Mehra and gaur A.K11 and the results agreed with the present work.

	Ultrasound velocity		Density (gm/ml))	
Molar Cone.	303.K	308K	303K	308K
O- benzo. Quinone (mole/Lit)				
0.0216	1162	1132	0.7796	0.7608
0.0432	1164	1134	0.7817	0.7629
0.0649	1166	1136	0.7839	0.7651
0.0865	1168	1138	0.7861	0.7673
0.1081	1170	1140	0.7882	0.7694
0.1297	1172	1142	0.7904	0.7716
0.1513	1174	1144	0.7925	0.7737
0.1730	1176	1146	0.7947	0.7759
0.1946	1178	1148	0.7969	0.7781
0.2162	1180	1150	0.7990	0.7802

	Isentropic		Lowering	
	compressibility		compressiblity	
Molar Cone.	303.K	308K	303K	308K
O- benzo. Quinone (mole/Lit)				
0.0216	95.00	102.58	0.59	0.65
0.0432	94.42	101.93	1.17	1.30
0.0649	93.83	101.28	1.76	1.95
0.0865	93.25	100.64	2.34	2.59
0.1081	92.68	100.01	2.41	3.22
0.1297	92.11	99.38	3.48	3.85
0.1513	91.55	98.75	4.04	4.48
0.1730	90.99	98.14	4.60	5.09
0.1946	90.43	97.52	5.16	5.71
0.2162	89.88	96.91	5.71	6.32

Depending on the polarity of side chain o – benzo Quinone vary in their hydrophilic or hydrophobic character. These properties are impotent in o – benzo quinine stru stone and o – benzo quinine – Acetone interoetions. The importance of the

P: ISSN NO.: 2321-290X

RNI: UPBIL/2013/55327

E: ISSN NO.: 2349-980X

	Reduce		Molar sound vilocity	
	viscosity (η)			
Molar Cone.	303.K	308K	303K	308K
O- benzo.				
Quinone				
(mole/Lit)				
0.0216	0.1703	0.1930	862.77	1.0034
0.0432	0.2437	0.2762	865.66	1.0069
0.0649	0.2683	0.3041	868.56	1.0103
0.0865	0.2805	0.3179	871.45	1.0138
0.1081	0.2878	0.3262	874.34	1.0172
0.1297	0.2927	0.3317	877.24	1.0207
0.1513	0.2962	0.3357	880.13	1.0241
0.1730	0.2988	0.3387	883.05	1.0276
0.1946	0.3009	0.3410	885.95	1.0311
0.2162	0.3025	0.3428	888.85	1.0345

	Solvation		Apparent	
	Number (Sn)		Molar	
			volume (k)	
Molar Cone.	303.K	308K	303K	308K
O- benzo.				
Quinone				
(mole/Lit)				
0.0216	0.1023	0.1051	10.7758	11.0518
0.0432	0.2048	0.2102	11.1302	11.4240
0.0649	0.3066	0.3146	11.4843	11.7958
0.0865	0.4074	0.4179	11.8349	12.1637
0.1081	0.5074	0.5203	12.1835	12.5296
0.1297	0.6065	0.6218	12.5302	12.8935
0.1513	0.7048	0.7225	12.8751	13.2553
0.1730	0.8025	0.8226	13.2196	13.6168
0.1946	0.8991	0.9215	13.5607	13.9745
0.2162	0.9950	0.0197	13.8999	14.3304

Side chain come from the influence, this has on the O - benzo quinone residues interaction with other structures, both with in a single o - benzo Quinone between acetone.

SYSTEM : O-BENZO QUINONE + ACETONE

SYSTEM : O-BENZO QUINONE + ACETONE

SYSTEM : O-BENZO QUINONE + ACETONE

Lowering Compressibility Vs Concentration

SYSTEM : O-BENZO QUINONE + ACETONE

Conclusion

These measurements have been used to evaluate some important parameter such as isentropic compressibility, specific acoustic impetonce,etc.

Investigations of the physicochemical properties of the denatured state of 0benzoquinone are required to identify and characteristics the contribution of various non bonding interaction between different functional groups of O-benzoquinone and acetone solvent interaction which are the driving force of co-valent process. The study nature of molecular interactions in the above solutions the results.

References

- T. V. Chalikion, A.P. Sarvazyan K. J. Breslaur, 1. Biophys. Chem.51 (23) 89 (1994).
- 2. G. Singh and T.S Banipal, Ind. J. Chem. 47A, 1355 (2008).

P: ISSN NO.: 2321-290X

RNI: UPBIL/2013/55327

E: ISSN NO.: 2349-980X

- 3. Von, P.H. Hippel, And T.w. schleich, Accts chem.Res. 2.257 (1969)
- 4. A. Ali, S. Hyder, S. Sabir, D. Chand, A.K. Nain J. Chem.Thormodyn, 38, 136 (2006)
- J.A. Riddick and W.R. Bunger, Technigues of chemistryVol – II organic solvents (Willey interscience New york) 1970
- Mukhtar singh and P. Rathore Ind. J. Chem.. 45A.2650 (2006).

- Shrinkhla Ek Shodhparak Vaicharik Patrika Vol-III* Issue-XII*August-2016
- 7. A pal and N chauhan Ind I. of chem. 49A 1309, (2010).
- 8. A. Srinivasa Rao, Ind J. of chem. 37A 659 (1998).
- 9. M.L. Parmar and M.K Guleria. Ind.J.of chem. 48 A, 806 (2009)
- 10. P.kumar et al.orient J.chem. 27 (2) 639 (2011)
- 11. R.Mehra and A.K Gaur, J.Ind.council of chem.26 (1), 85 (2009).